SSC CHSL - CHT1 : 180341 GRAND TEST HINTS AND SOLUTIONS

ANSWER KEY

1	(3)	26	(2)	51	(1)	76	(4)
2	(2)	27	(4)	52	(2)	77	(2)
3	(3)	28	(3)	53	(3)	78	(2)
4	(2)	29	(2)	54	(1)	79	(4)
5	(2)	30	(3)	55	(1)	80	(3)
6	(1)	31	(2)	56	(3)	81	(1)
7	(1)	32	(4)	57	(2)	82	(1)
8	(2)	33	(2)	58	(1)	83	(4)
9	(3)	34	(3)	59	(4)	84	(2)
10	(2)	35	(1)	60	(1)	85	(3)
11	(3)	36	(3)	61	(2)	86	(2)
12	(2)	37	(1)	62	(4)	87	(1)
13	(4)	38	(3)	63	(2)	88	(3)
14	(1)	39	(2)	64	(2)	89	(3)
15	(2)	40	(2)	65	(2)	90	(4)
16	(4)	41	(4)	66	(3)	91	(1)
17	(4)	42	(2)	67	(1)	92	(2)
18	(3)	43	(2)	68	(4)	93	(1)
19	(2)	44	(2)	69	(4)	94	(1)
20	(3)	45	(4)	70	(3)	95	(1)
21	(3)	46	(1)	71	(4)	96	(4)
22	(4)	47	(3)	72	(3)	97	(2)
23	(4)	48	(3)	73	(4)	98	(3)
24	(1)	49	(4)	74	(1)	99	(1)
25	(3)	50	(1)	75	(2)	100	(1)

2. (2) 10 - 1 = 9 and $9 \times 11 = 99$ 9 - 1 = 8 and $8 \times 11 = 88$

3. (3) $Q \xrightarrow{+3} T \xrightarrow{+1} U$ $I \xrightarrow{+3} L \xrightarrow{+1} M$ $B \xrightarrow{+3} E \xrightarrow{+1} F$ Similarly,

1

4.

11. (3

- $W \xrightarrow{+3} Z \xrightarrow{+1} A$ (2) 3*3-1 = 9 1 = 8 3*3*3+1 = 27+1 = 28 4*4-1 = 16-1 = 154*4*4+1 = 64+1 = 65
- 5. (2) All except Gazelle are animals found in the mountains.
- 6. (1) Except (41-72) The difference between rest of the intervals is a multiple of 9.
- 7. (1) Except mare, all the others are different types of deer.
- 8 (2) In all other pairs, the product of the two numbers is 126.

10. (2) Series is; 1^2 , $(2^2 + 1)$, 3^2 , $(4^2 + 1)$, 5^2 , $(6^2 + 1)$, 7^2 So wrong term is 15

$$\frac{20+9+14+7}{2} = 30$$

and
$$\frac{11+10+10+15}{2} = 25$$

Therefore,
$$\frac{18 + ? + 12 + 20}{2} = 32$$

$$\Rightarrow ? = 64 - 50 = 14$$

- 12. (2) (7×3) = 21 and (9×3) = 27 and (4×9) = 36 and (2×9) = 18 Therefore, (9×6) = 54 and (4×6) = 24.
 13. (4) Originally, let number of women = X. Then, number of men = 2X.
 - So, in city Y, we have :
 - (2X 10) = (X + 5) or X = 15. Therefore, total number of passengers in the beginning = (X + 2X) = 3X = 45.
- 14. (1)No. of lettersI like You $8 \times 2 = 16$ I hate u $6 \times 2 = 12$
- 15. (2) The arrangement is as follows: T Q P R S Therefore, P is sitting between Q and R.
- 16. (4) | a b | a b c | a b c d | a b c d e | a b
- 17. (4) The girl is the wife of the grandson of Amit's mother i.e. the girl is the wife of son of Amit. Hence, Amit is father-in-law of that girl.

20. (3) Let Varun's age today = x years. Then, Vaurn's age after 1 year = (x + 1) years. $x + 1 = 2(x - 12) \Rightarrow x + 1 = 2x - 24 \Rightarrow x = 25.$

25. (3)

51. (1) Chemistry : Mathematics | Mathematics : Physics 3 : 5 3 5 • After combining the ratio, Chemistry : Mathematics : Physics 9x 15x : 25x : According to the question, 9x + 15x + 25x = 147 $\Rightarrow 49x = 147$ $\Rightarrow x = 3$ Marks in chemistry = $9 \times 3 = 27$

52. (2) Square root of

$$\frac{(0.75)^3}{(1-0.75)} + (0.75 + (0.75)^2 + 1)$$

$$=\frac{(0.75)^3 + 1^3 - (0.75)^3}{(1 - 0.75)} = \frac{1}{0.25} = 4$$

Square root of 4 is 2 53. (3) Area of the base

$$= \frac{1}{2} \text{ (sum of parallel sides)} \times \text{perpendicular distance}$$
$$= \frac{1}{2} (14+8) \times 8 = 88 \text{ sq. cm.}$$

SSC CHSL : TIER-1

 \therefore Volume = Area of the base \times height

$$\Rightarrow 1056 = 88 \times h \Rightarrow h = \frac{1056}{88} = 12 \text{ cm}$$

54. (1) Total age of the 4 members of the family, 10 yrs. ago = 24 × 4 = 96 yrs. Present age of 4 members = 96 + 40 = 136 yrs. Total age of the 7 members presently = 22 × 7 = 154 yrs. Age of [twins + youngest child] = 154 - 136 = 18 yrs. Let the age of the one of the twins = x yrs. ∴ age of the youngest = (x - 3) yrs. Then, 2x + (x - 3) = 18 or, 3x = 21 ∴ Age of children = 7, 7, 4 yrs.
55. (1) Difference in time after accident = (4 + 1 - 3.5)hr = 1.5 km

Distance = 150 km

Speed =
$$\frac{150}{1.5}$$
 = 100 km/h

Speed after accident 75% = $\frac{3}{4}$

ATQ,

Before After
Speed
$$\rightarrow 4$$
 — 3
Time $\rightarrow 3$ — 4
 \downarrow_{x4} $\downarrow_{hour late}$ \downarrow_{x4}
Usual time $\rightarrow 12 \text{ hours}$ \downarrow_{x4} \downarrow_{16}
4 hour late

Required distance =
$$12 \times 100 = 1200$$
 km

6. (3)
$$p \times q = p + q + \frac{p}{q}$$

=

5

$$\therefore 8 \times 2 = 8 + 2 + \frac{8}{2} = 10 + 4 = 14$$

57. (2) Area of large cube = $6(5)^2 = 150$ (unit) Area of cuboid = $2(1 \times 1 + 1 \times 125 + 125 \times 1) = 502$ sq.units

$$\therefore$$
 Percentage increase in surface area

$$=\frac{502-150}{150}\times100=234\frac{2}{3}\%$$

58. (1) Let the downstream and upstream speed be 3x and 5x.

Speed of the current =
$$3\frac{3}{4}$$
 km/hr

$$\Rightarrow \frac{5x - 3x}{2} = \frac{15}{4} \text{ km/hr.} \Rightarrow x = \frac{15}{4} \text{ km/hr}$$

$$=\frac{5x+3x}{2} = 4x = \frac{4 \times 15}{4} \text{ km/hr} = 15 \text{ km/hr}$$

2

Grand Test : CHSL-CHT1 : 180341

59. (4) Total CP of [25 kg + 35 kg] rice
= Rs. (25 × 16.50 + 35 × 24.50)
= Rs. 1270
SP of 25% profit = Rs. (1270 × 1.25) = Rs. 1587.5
∴ Required rate =
$$\frac{1587.5}{60}$$
 = Rs.26.45 per kg

60. (1) Let the total no of students be 100 then failed students in computer = 100 - 28 = 72
Fail students in commerce = 100 - 13 = 87
Student only failed in computer = 72 - 62 = 10
Student only failed in commerce = 87 - 62 = 25
Fail in both subjects = 62
Total failed students = 62 + 25 + 10 = 97
∴ Pass students = 100 - 97 = 3

Only in computed no of pass students $=\frac{10}{3} \times 9 = 30$

61. (2) Let $\theta = 0^{\circ}$, then m = a and n = 0

$$(m+n)^{\frac{2}{3}} + (m-n)^{\frac{2}{3}} = a^{\frac{2}{3}} + a^{\frac{2}{3}} = 2a^{\frac{2}{3}}$$

62. (4) $x + \frac{1}{x} = p$

Squaring both sides,

$$x^{2} + \left(\frac{1}{x}\right)^{2} = p^{2}$$
$$\Rightarrow x^{2} + \frac{1}{x^{2}} + 2 = p^{2}$$
$$\Rightarrow x^{2} + \frac{1}{x^{2}} = p^{2} - 2$$

Cubic both sides,

$$\left(x^{2} + \frac{1}{x^{2}}\right)^{3} = (p^{2} - 2)^{3}$$

or, $x^{6} + \frac{1}{x^{6}} = p^{6} - 6p^{4} + 9p^{2} - 2$

63. (2) Teaching staff Non Teaching 12,000 5,000 10,000

64. (2) Let radius of the circle is 'r' units OP = (1 - r), OA = (1 + r) and AP = 1 In $\triangle AOP$; $OA^2 = AP^2 + OP^2$

 \therefore Area of smaller circle $= \pi \left(\frac{1}{4}\right)^2 = \frac{\pi}{16}$ square units

Sum of the area of the quarter circles

 $=\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$ square units Area of shaded region

$$2 - \left(\frac{\pi}{16} + \frac{\pi}{2}\right) = 2 - \frac{9}{16}\pi$$

$$2 - \frac{3}{16} \times \frac{22}{7} = \frac{15}{56}$$
 sq. units

65. (2) Rectangle having, l = 6 unit, b = 5 unit. Area = $l \times b = 6 \times 5 = 30$ sq. unit New rectangle having l = 7, b = 4Area = $l \times b = 7 \times 4 = 28$.

Ratio =
$$\frac{30}{28} = 15:14$$

Area of region gazed

$$=\frac{\angle A+\angle B+\angle C}{360^{\circ}}(\pi R^2)$$

$$=\frac{180}{360}\left[\frac{22}{7}\times7\times7\right]=77 \text{ sq. units}$$

67. (1) Given that

$$\sin \alpha + \sin \beta = a \text{ and} \qquad \dots(i)$$

 $\setminus \qquad \cos \alpha + \cos \beta = b \qquad \dots(ii)$

3

OFR

Squaring and adding them

 $a^2 + b^2 = \sin^2 \alpha + 2\sin \alpha . \sin \beta$

 $+\cos^2\alpha + \cos^2\beta + 2\cos\alpha\cos\beta$

4

69.

$$a^2 + b^2 = 2 + 2\cos(\alpha - \beta)$$

 $\therefore \cos(\alpha - \beta) = \frac{a^2 + b^2 - 2}{2}$

Again, squaring and subtracting them,

[equation (i) and (ii)] $b^{2} - a^{2} = \cos^{2} \alpha - \sin^{2} \alpha + \cos^{2} \beta - \sin^{2} \beta$ $+2[\cos \alpha \cos \beta - \sin \alpha \sin \beta]$

$$= \cos 2\alpha + \cos 2\beta + 2\cos(\alpha + \beta)$$

$$= 2\cos(\alpha + \beta)[\cos(\alpha - \beta) + 1]$$

$$= 2\cos(\alpha + \beta) \left[\frac{a^2 + b^2 - 2}{2} + 1 \right]$$
$$= 2\cos(\alpha + \beta) \left[\frac{a^2 + b^2}{2} \right]$$
$$b^2 - a^2$$

$$\therefore \cos(\alpha + \beta) = \frac{b^2 - a}{a^2 + b^2}$$

48 cm

The above figure, will look like the figure (below), when we open it.

The base circumference

$$= 2\pi r = 2 \times \frac{22}{7} \times \frac{56}{11} \times \frac{1}{2} = 16 \text{ cm}$$

 \therefore AM = length of one complete turn

$$=\sqrt{16^2+12^2}=20$$
 cm

 \therefore Total length = 4 × 20 = 80 cm

A • · · · · · ·

B ← →

Given, speed of A = 60 km/hr. Distance travelled in 3 hr = $60 \times 3 = 180$ km At 2 pm, Speed of B = 72 km/hr Time difference = 3 hr. Relative velocity = (72 - 60) = 12 km/hr

Now, Time – gap (meeting) =
$$\frac{180}{12}$$
 = 15 hr. after they

Ν

met.

They will meet at 2 pm + 15 hour = 5 am.

70. (3) Ratio of the amount of water filled in the cistern

$$= 1^2 : \frac{16}{9} : 4 = 9 : 16 : 36$$

Since 36 cubic unit of water is filled by the pipe of largest diameter in 6 minutes.

1 cubic unit of water is filled by the pipe of largest

diameter =
$$61 \times \frac{3}{6}$$

61 cubic unit of water is filled by the pipe largest

liameter in
$$\frac{61 \times 36}{61} = 36$$
 minutes

71. (4) Total accidents = 230 + 150 + 120 + 160 + 40 + 200 + 100 = 1000Percentage of accidents involving two-wheelers to two wheelers

$$=\frac{230}{100}\times100=23\%$$

Percentage of accidents involving two-wheelers to other objects

$$=\frac{770\times100}{1000}=77\%$$

 \therefore Required difference = 77 - 23 = 54% less

- 72. (3) Two-wheelers + Cars + Buses + Stationary Vehicles = 230 + 150 + 120 + 100= $600 \approx 60\%$
- 73. (4) Since $1000 \equiv 360^{\circ}$ Sector angle for stationary vehicles.

$$=\frac{360}{1000}\times100=36^{\circ}$$

74. (1) Required percentage

$$=\frac{40+200}{1000}\times 100 = \frac{24000}{1000} = 24$$

75. (2) Required difference $=\frac{160-120}{1000} \times 100 = 4\%$